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Abstract
A new type of supersymmetric transformations of the coupled-channel radial
Schrödinger equation is introduced, which do not conserve the vanishing
behaviour of solutions at the origin. Contrary to the usual transformations,
these ‘non-conservative’ transformations allow, in the presence of thresholds,
the construction of well-behaved potentials with coupled scattering matrices
from uncoupled potentials. As an example, an exactly-solvable potential matrix
is obtained which provides a very simple model of the Feshbach-resonance
phenomenon.

PACS numbers: 03.65.Nk, 24.10.Eq

(Some figures in this article are in colour only in the electronic version)

During the past 20 years, Darboux transformations of the one-dimensional Schrödinger
equation, also known as supersymmetric quantum mechanics [1], have evolved into a powerful
tool to solve the inverse scattering problem for a given partial wave [2, 3]. Indeed, this
formalism allows both the deductive construction from scattering data of a unique interaction
potential without bound state [4] and the construction of all potentials, phase-equivalent to
that potential but displaying different bound spectra [5]. When the initial potential is zero, the
transformed potentials not only fit experimental data with high precision, they are also exactly
solvable and have compact analytical expressions [6], a striking feature of the method which
reveals its efficiency.

This success seems however restricted to the single-channel case: for coupled channels,
supersymmetric transformations were not able up to now to provide a complete solution of
the scattering inverse problem, despite the early generalization of their algebraic formalism
to coupled equations [7]. Whereas the construction of phase-equivalent potentials has proved
to be possible [8], a deductive construction of potentials by inversion of coupled-channel
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scattering matrices is still missing. In the case of coupled channels with different thresholds,
such an inversion even seems impossible, as a matter of principle: applying a supersymmetric
transformation to a diagonal (and hence uncoupled) potential matrix may result in a coupled
potential matrix [9] but the corresponding scattering matrix will always remain diagonal
[10]. This makes it impossible to invert realistic data with coupling, which correspond to
non-diagonal scattering matrices, by supersymmetric transformations of simple uncoupled
potentials such as the zero potential.

The need for coupled-channel inversion techniques is however strongly growing these
days since many problems in physics rely on coupled-channel systems. In nuclear
physics for instance, theoretical calculations of hypernuclei [11] require baryon–baryon
interactions, which naturally display coupling between channels corresponding to different
hyperon–nucleon and hyperon–hyperon states. In the context of experimental Bose–Einstein
condensation, atom–atom interactions are monitored with the help of magnetic Feshbach
resonances [12], a phenomenon based on the coupling between different spin states displaying
distinct thresholds in the presence of an external magnetic field [13].

The purpose of this letter is to prove that the limitations on coupled-channel
supersymmetric transformations mentioned in [10] do not hold for a category of
transformations not used up to now. These transformations do not conserve the boundary
behaviours of solutions of the Schrödinger equation at the origin, which is why we call them
‘non-conservative’. Nevertheless, we show below that these transformations lead to physical
potentials (i.e., satisfying usual scattering theory assumptions) with well-defined physical
solutions. We establish their general properties, compare them with usual transformations
and finally apply them in the simplest possible situation: a single transformation of an initial
vanishing potential. This leads to a Feshbach-resonance exactly-solvable model.

Using definitions from standard coupled-channel scattering theory [14, 15], we consider
a set of N coupled radial Schrödinger equations, which read in reduced units

−ψ ′′(k, r) + V (r)ψ(k, r) = k2ψ(k, r), (1)

where the prime means derivation with respect to the distance r between the two bodies. The
potential V is an N × N real symmetric matrix, supposed to be short ranged and bounded.
The complex wave-number diagonal matrix k is defined by its elements ki = √

E − �i , where
E is the centre-of-mass energy and 0 = �1 � �2 � · · · � �N are the threshold energies of
the N channels. The solution ψ is an N × N solution matrix made of N solution vectors. As
usual in the context of supersymmetric quantum mechanics [7, 16], we do not only consider
here physical solutions of (1), which are bound for all r and vanish at the origin: we also use
mathematical solutions as important auxiliary tools to transform potential V .

Equation (1) being of second order, its general mathematical solution can be constructed
by linear combination, with matrix multiplication on the right-hand side, of two solution
matrices made of 2N linearly independent vectors. In the following, we use two such pairs of
solutions: Jost solution matrices f (±k, r), that behave asymptotically as pure exponentials,

f (±k, r) ∼
r→∞ exp(±ıkr), (2)

and a pair of solutions made of the regular solution matrix ϕ(k, r), which vanishes at the origin,
and solution matrix η(k, r), the derivative of which vanishes at the origin. We normalize these
as ϕ′(k, 0) = η(k, 0) = I , where I is the identity matrix. In terms of Jost solutions, the regular
solution reads [15]

ϕ(k, r) = 1

2ı
[f (k, r)k−1F(−k) − f (−k, r)k−1F(k)], (3)

which defines the Jost matrix F(k) as

F(k) = f T (k, 0), (4)
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where T means transposition. This is obtained by calculating, both at the origin and at infinity,
the Wronskian W [ϕ(k, r), f (k, r)] ≡ ϕT (k, r)f ′(k, r)−ϕ′T (k, r)f (k, r), the value of which
is independent of r, taking into account W [f (−k, r), f (k, r)] = 2ık. The Jost matrix is a
key quantity in scattering theory: bound (resp. resonant) states correspond to zeros of its
determinant in the upper (resp. lower) ki planes and the scattering matrix S reads

S(k) = k−1/2F(−k)F−1(k)k1/2. (5)

For that reason, the following study mostly concentrates on Jost-matrix properties.
To perform a supersymmetric transformation of (1), we follow [7] and first factorize it as

[A+A− − κ2]ψ(k, r) = k2ψ(k, r), (6)

where A± = ±d/dr + U(r) are mutually adjoint first-order differential operators, defined in
terms of the superpotential real symmetric matrix U. Equation (6) is equivalent to (1) when

U(r) = σ ′(r)σ−1(r), (7)

where σ(r) is a mathematical solution matrix of (1) at negative energy E , referred to as
the factorization solution. This solution matrix is assumed to be real and invertible for
all r; moreover, its self-Wronskian W(σ, σ ) vanishes in order for U to be symmetric.
Another important property of (7) is that multiplying the factorization solution on the right
by an arbitrary constant regular matrix, which is equivalent to changing the factorization
solution, does not affect the superpotential. This strongly reduces the number of possible
transformations. Finally, the wave-number diagonal matrix κ is defined by its positive elements
κi = √

�i − E .
We then apply A− on the left to (6), which leads to a new Schrödinger equation with the

potential matrix

Ṽ (r) = V (r) − 2U ′(r) = −V (r) − 2κ2 + 2U 2(r), (8)

which satisfies the same regularity and symmetry conditions as V , and with solutions

ψ̃(k, r) = A−ψ(k, r). (9)

The asymptotic behaviour of this relation when ψ is a Jost solution of the initial equation leads
to the following expression for the Jost solution of the new equation:

f̃ (k, r) = A−f (k, r)[U(∞) − ık]−1. (10)

As will be proved elsewhere, when all thresholds are distinct, U(∞) is a diagonal matrix with
elements ±κi , the signs depending on the asymptotic behaviour of factorization solution σ .
Let us stress that (10) shows that supersymmetric transformations always transform a Jost
solution into a Jost solution, up to a multiplicative factor; in particular, when f vanishes at
infinity, f̃ vanishes too.

The situation is very different for the behaviour at the origin: when applied to a regular
solution of the initial equation, (9) does not systematically lead to a regular solution of the
new equation, which leads to the distinction between two types of transformations. We call
‘conservative’ transformations those that transform a regular solution of the initial equation
into a regular solution of the new equation: ϕ̃(k, r) ∝ A−ϕ(k, r). Most transformations used
up to now in the literature [7, 8] belong to this category; in particular, they transform physical
solutions into physical solutions, at least for E �= E . Using (3) and (4), these transformations
can be shown to lead to simple modifications of the Jost matrix, similar to the single-channel
case [4, 17],

F̃ (k) = [∓U(∞) − ık]±1F(k). (11)
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In this equation, the upper (resp. lower) signs correspond to σ diverging (resp. vanishing) at
the origin, two cases which will be considered in detail elsewhere. For vanishing σ(0), (11),
combined with (5), leads for instance to the scattering-matrix modification by supersymmetric
transformations obtained in [7].

For one-channel elastic scattering, (11) is most useful in the context of inverse scattering
problem: such transformations can easily be iterated, which leads to a Padé approximant of
the Jost matrix of arbitrary order, used to fit experimental scattering data [3]. In the coupled-
channel case with distinct thresholds, however, this Jost-matrix modification is very restrictive:
since both k and U(∞) are diagonal matrices, an initial decoupled potential always transforms
into a potential with a decoupled Jost matrix, and hence a decoupled scattering matrix, as
found in [10]. Consequently, these transformations are not able to fit data corresponding to
non-diagonal scattering matrices.

In the present work, we consider a new category of supersymmetric transformations:
those for which the factorization solution is a finite regular matrix at the origin. In this case,
the value of the superpotential at the origin, U(0), is also finite and can be fixed arbitrarily.
This can be shown by expressing σ as a linear combination of ϕ and η satisfying (7),

σ(r) = η(ıκ, r) + ϕ(ıκ, r)U(0), (12)

where the assumption σ(0) = I does not reduce the generality of the superpotential. Applying
(9) to a regular solution of the initial equation leads in this case to a solution of the new
equation which does not vanish at the origin. This type of supersymmetric transformations
hence break boundary conditions (this can also happen for usual transformations, but only
for E = E ; here, the boundary condition is broken for any energy E). We propose to call
them ‘non-conservative’. Similar transformations have already been used in [18] but for the
very particular case of zero factorization energy in the single-channel case. Since the new
potential (8) satisfies standard scattering theory assumptions, its regular solution, Jost matrix
and scattering matrix are well-defined. Using (4) and (10), one gets its Jost matrix

F̃ (k) = [U(∞) − ık]−1[F(k)U(0) − f ′T (k, 0)]. (13)

This relation is clearly more complicated than for conservative transformations, with the
drawback that its iteration might be difficult. However, it presents the enormous advantage
that even when the initial potential is uncoupled, which means its Jost solution and matrix
are diagonal, the transformed Jost matrix becomes coupled by choosing a non-diagonal U(0).
This new type of supersymmetric transformation thus seems to solve the main drawback
of supersymmetric quantum mechanics for coupled-channel systems with distinct thresholds
stressed in [10].

Let us now illustrate these findings by applying the above formalism to an initial vanishing
potential V = 0, for which F(k) = S(k) = I . The most general factorization solution matrix
for a non-conservative transformation can be written in two equivalent ways,

σ(r) = cosh(κr) + sinh(κr)κ−1U(0) = exp(κr)C + exp(−κr)D. (14)

For N channels, the transformed potential, as obtained from (7)–(8), depends on κ1, . . . , κN (or
equivalently on N − 1 thresholds and one factorization energy) and on N(N + 1)/2 arbitrary
parameters appearing in U(0). It is exactly solvable and is equivalent to the potential derived
by Cox [19, 20] in his q = 1 case. However, the present derivation not only leads to a much
simpler analytical expression for the potential (compare (4.7) of [19] to (7) and (8)) but also
subsumes it: the restriction det A �= 0 of [19], which is equivalent to det C �= 0 in (14), does
not apply here.
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In the case det C �= 0, one has U(∞) = κ , as shown by (7) and (14). According to (13),
the Jost matrix of the new potential then reads

F̃ (k) = (κ − ık)−1 [U(0) − ık] . (15)

For N = 2 channels for instance, the potential depends on five real parameters

κ =
(

κ1 0
0 κ2

)
, U(0) =

(
α1 β

β α2

)
(16)

and (15) is equivalent to (5.1) of [19].
As stressed above, our formalism is also valid for rank C = 1. For α2 �= −κ2, one has in

this case U(∞) = diag(−κ1, κ2), which leads to the Jost matrix

F̃ (k) =
(

k1+ıα1
k1−ıκ1

ıβ

k1−ıκ1

ıβ

k2+ıκ2

k2+ıα2
k2+ıκ2

)
. (17)

This new result cannot be obtained from Cox’ formula. Moreover, for det C = det D = 0,
which is equivalent to the particular choice of parameters

α1,2 = ±
√

(κ1κ2 − β2)(κ1/κ2)±1 (κ1κ2 > β2 > 0), (18)

further simplifications occur. First, one gets explicitly

U(r) = 1

cosh y

(−κ1 sinh y
√

κ1κ2√
κ1κ2 κ2 sinh y

)
(19)

with y = (κ2 − κ1)r − arccosh
√

κ1κ2/β2, and hence

Ṽ = 2(κ2 − κ1)

cosh2 y

(
κ1

√
κ1κ2 sinh y√

κ1κ2 sinh y −κ2

)
(20)

where the diagonal term Ṽ11 (resp. Ṽ22) is positive (resp. negative). Second, the determinant
of the Jost matrix (17) has two analytical zeros: one at k1R = √

κ2/κ1β − ıα1, k2R =
−√

κ1/κ2β − ıα2, the other one at −k∗
1R,−k∗

2R. Since these zeros lie in the lower-half k1 and
in the upper-half k2 complex planes, they correspond to a resonance in channel 1, only visible
below threshold � = κ2

2 − κ2
1 . The three remaining parameters κ1, κ2 and β can be expressed

in terms of this resonance energy ER and width 	, as defined by k2
1R ≡ ER − ı	/2. They read

2κ2
1,2 =

√
E2

R + 	2/4 +
√

(ER − �)2 + 	2/4 ∓ �,

4β4 = (
ER +

√
E2

R + 	2/4
)
(ER − � +

√
(ER − �)2 + 	2/4)

(21)

and can be replaced in potential (20), which solves a schematic two-channel inverse problem
with one resonance.

When ER < �, this resonance is a Feshbach resonance, for which the model constitutes
a good pedagogical example: when 	 = 0, all elements of Ṽ vanish, except for Ṽ22 which has
then a bound state at energy ER. This corresponds to a zero of the Jost-matrix determinant
at k1R = √

ER, k2R = ı
√

� − ER. When 	 > 0, coupling turns this bound state into a
resonance by moving the zero off the axes, counter-clockwise for k2 and clockwise for k1.
For instance, for � = 10, ER = 7 and 	 = 1, one gets the potential plotted in figure 1,
which is well behaved despite a slower asymptotic decrease of the off-diagonal terms than
of the diagonal ones. The corresponding scattering matrix, as defined by its eigenphases and
mixing parameter [15, 20], is represented in figure 2, where the Feshbach resonance can be
seen on δ1. Crossing threshold, which corresponds to going from positive imaginary k2 to
positive real k2, produces an interesting cusp effect in δ1 [15], for which the present model
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Figure 1. Two-channel potential matrix (20) as defined by parameters (21) for the threshold energy
� = 10, Feshbach-resonance energy ER = 7 and width 	 = 1.

δ

ε

δ

π

π/

−π/

E

Figure 2. Eigenphases δ1, δ2 and mixing parameter ε of the scattering matrix corresponding to the
potential of figure 1, as defined by (5), (17), (18) and (21).

also constitutes an analytical example. The case ER > �, though allowed, is less interesting
from the physical point of view: when 	 = 0, coupling does not disappear and the zero of the
Jost-matrix determinant lies at k1R = √

ER, k2R = −√
ER − �, with no strong impact on the

physical region k1 >
√

�, k2 > 0.
In conclusion, we have introduced a new type of supersymmetric transformations which

are able to transform an uncoupled potential into a potential with a non-diagonal scattering
matrix for non-vanishing thresholds (see the non-trivial behaviour of ε in figure 2). The
simplest possible application of this formalism leads to an exactly-solvable, two-channel
s-wave potential with one resonance which, for particular choices of parameters, provides a
textbook example of the Feshbach-resonance phenomenon, with compact analytical expression
both for the potential and its Jost matrix. This is a promising first step for coupled-channel
inversion, the purpose of which is to construct interaction potentials that fit thresholds, bound
states and resonant states measured experimentally. Future research will extend this result
to higher partial waves and to iteration of transformations in order to get a more flexible
potential fitting several states simultaneously. In particular, it is possible to combine one non-
conservative transformation with an arbitrary number of usual conservative transformations.
This might be sufficient to get a supersymmetric-quantum-mechanics inversion technique as
efficient in the coupled-channel case as it is in the single-channel case [3].
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